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Contrastive Learning

• CL: A long story …

• CL has achieved empirical progress in Self-

supervised learning
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Contrastive Learning

• Contrastive loss guides the learned features to bring 

positive pairs together and push negative pairs farther 

apart.

• : a set of pairs randomly sampled from

• : a positive pair

• :  negative pairs,

• : a discriminating function
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Contrastive Learning

• Key points

➢ Positive sample

➢ Negative samples

What to contrast is 

crucial !



Contents

• Introduction

• Learning what to contrast via Meta Feature 

Augmentation

• Learning what to contrast via Interventional Meta 

Semantic Regularizer

• Summary
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Motivation

➢ Contrastive learning heavily relies on informative features, 

or “hard” (positive or negative) features

• Early works include informative features by applying 

complex data augmentations or adopting large batch size 

or memory bank

• Recent works design elaborate sampling approaches to 

explore informative features

➢ Learning anti-collapsed feature augmentation
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Challenge

➢ It is desirable to learn informative feature augmentations

• alleviate the need of strong augmentations on data

• from a restricted amount of images (small batch size)

• anti-collapsed
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MetAug

• Meta Feature Augmentation (MetAug)

• Tackle augmentations on features

• Learn view-specific encoders (with projection 

heads) and auxiliary meta feature augmentation 

generators (MAGs) by margin-injected meta 

feature augmentation and optimization-driven 

unified contrast.



• Overview

MetAug



• Updating the encoders and projectors

• Updating MAGs in a meta learning manner: leverages 

second-derivative technique to update the parameters with 

respect to the improvement of the contrastive learning

Training



Updating MAGs



Margin-injected regularization

• Injects a margin to encourage MAGs to generate anti-

collapsed augmented features



Optimization-Driven Unified Contrast

• Jointly contrasts all features in one gradient back-propagation step

• Emphasizes the weight to the similarity that deviates from the 

optimum and decrases the weight to the similarity having close 

proximity with the optimum



Evaluation

• Comparison with self-supervised learning methods



Evaluation

• Comparison with self-supervised learning methods



Evaluation

• Comparison under multiple batch sizes

• Comparisons with different data augmentations



Contents

• Introduction

• Learning what to contrast via Meta Feature 

Augmentation

• Learning what to contrast via Interventional 

Meta Semantic Regularizer

• Summary



Motivation

• Often-Overlooked Characteristic of Current Contrastive 

Learning Methods

• 1: training and testing on 

full images

• 2: training on full images 

and testing on foreground 

images

• 3: training and testing on 

foreground images

• 4: training on foreground 

images and testing on full 

images



Motivation

• Often-Overlooked Characteristic of Current Contrastive 

Learning Methods
Observation: background-related 

information degrades the performance of 

the CL models.

Explanation: the feature extractor trained 

on full images so that it extracts 

background-dependent semantic features. 

But contrastive learning strives to be 

adaptable to a variety of downstream tasks. 

Only foreground-related semantic 

information can ensure the robustness of 

the learned features to various tasks.

Intuition

1. To capture the causal links between semantic information, positive sample, and anchor, we establish a Structural 

Causal Model (SCM).

2. We propose a new method by implementing backdoor adjustments to the planned SCM.



Problem Formulation

➢ Structural Causal Model

• The nodes in SCM represent the abstract data variables 

and the directed edges represent the (functional) causality

• : semantic information

• : positive sample

• : anchor (or label)



Problem Formulation

➢ Causal Intervention via Backdoor Adjustment 

• The backdoor adjustment assumes that we can observe 

and stratify the confounder

• : a stratification of semantic feature

• : the true causality between                   

and            .



Meta Semantic Regularizer

• The implementation of the backdoor adjustment during the 

training phase



Meta Semantic Regularizer

• The meta semantic regularizer is trained alongside the feature extractor, with two stages per epoch

• In the first stage,   and      are learned using the two augmented training set          , and the 

semantically relevant weight matrix     . In the second stage,         is updated by computing its 

gradients with respect to the contrastive loss.



Meta Semantic Regularizer



Meta Semantic Regularizer
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Error Bound

• Downstream classification task

• Linear classifier; fine-tuning



Evaluation

• Comparison with self-supervised learning methods



Evaluation

• The experimental results for two kinds of ICL-MSR models

• 1: training and testing on full images 

• 2: training on full images, and testing on foreground images
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Summary

• What to contrast is important

• Learning informative samples to contrast via Meta 

Feature Augmentation

• Learning foreground to contrast via Interventional 

Meta Semantic Regularizer
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Future/On-going work

• What to contrast?

• Hard/false negative/positive mining

• Uncertainty/distribution

• Contrasting structured data
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